



#### Links to MYP concepts

Key concepts from other MYP subjects that could be used within the **statistics and probability** branch include **communication** (representation, probability of events), **communities** (samples, populations), **connections** (probability of successive trials, measures of central tendency), **development** (probability of successive trials, population sampling), **global interaction** (population sampling, representations) and **systems** (probability of events, conditional probability). Related concepts from MYP mathematics that could be used within the **statistics and probability** branch include **change**, **equivalence**, **generalization**, **justification**, **measurement**, **model**, **pattern**, **quantity**, **representation**, **simplification** and **system**.

| Торіс                                                                                                                    | Skills                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Standard and extended mathematics                                                                                        |                                                                                          |
| Graphical analysis and representation (pie charts,<br>histograms, line graphs, scatter plots, box-and-<br>whisker plots) | Data collection<br>Constructing and interpreting graphs<br>Drawing the line of best fit  |
| Population sampling                                                                                                      | Selecting samples and making inferences about populations                                |
| Measures of central tendency/location (mean,<br>mode, median, quartile, percentile) for discrete and<br>continuous data  | Calculating the mean, median and mode, and choosing the best measure of central tendency |
| Measures of dispersion (range, interquartile range) for discrete and continuous data                                     | Calculating the interquartile range                                                      |

#### Collect data

- 1. Measure the circumference of your tree cookie
- 2. Count the growth rings of your cookie
- 3. Collect data from all participants

#### Use the TI Nspire to enter the data

List A label with "circumference"

List B label with "age"

# **TI** instructions

- 1. New document
- 2. 4 Add lists and spreadsheets
- 3. Enter under column A circumference of all samples (in cm)
- 4. Enter under column B age (in years)
- 5. Be sure to label columns
- 6. Ctr doc
- 7. 5 Data and statistics
- 8. Click to put age on X axis and circumference on Y axis
- 9. Menu
- 10. 4 analyze
- 11. 6 Regression
- 12. 2 show linear

### What does the line of regression tell you?

Is the correlation strong?

Is it positive or negative?

Are there any outliers?

Is it fair to estimate the age of a tree with a circumference of 100cm? Justify your answer.

## Why factors affect the size of the rings?

Consider growth conditions for trees....

Why would trees have variability in the size of their growth rings?

# Logic and Reasoning

Consider how each of the following affects growth of trees in your environment:

Humidity

Water in soil

Competition

Wind

Nutrients in soil

temperature

# D. Applying mathematics in real-life contexts

MYP mathematics encourages students to see mathematics as a tool for solving problems in an authentic real-life context. Students are expected to transfer theoretical mathematical knowledge into real-world situations and apply appropriate problem-solving strategies, draw valid conclusions and reflect upon their results.

In order to reach the aims of mathematics, students should be able to:

- i. identify relevant elements of authentic real-life situations
- ii. select appropriate mathematical strategies when solving authentic real-life situations
- iii. apply the selected mathematical strategies successfully to reach a solution
- iv. justify the degree of accuracy of a solution
- v. justify whether a solution makes sense in the context of the authentic real-life situation.